Info for students
We are always looking for motivated master students to join our team. Here are some of the experiments we are working on:
- Entanglement, Quantum Communication, and Tests of Quantum Physics
Building new sources of entanglement, distribution of entanglement over long distances, implementing entanglement swapping and work towards implementing next-generation quantum networks. The sources built will be the basis for future quantum networks to connect quantum computers and quantum sensors, and we will aim to couple the entanglement to macroscopic objects in the future to enable tests of the foundations of quantum physics. - Advanced Quantum Communication Protocols
Using state-of-the-art equipment to test advanced quantum communication protocols like entanglement distribution, entanglement-based quantum key distribution (QKD), and realizing measurement-device-independent QKD using superconducting nanowire detectors to allow for the safe and high-speed distribution of quantum keys to connect distant communication partners in Slovenia and in neighboring countries. - Quantum Key Distribution (QKD) and Quantum Networks
Implement state-of-the-art QKD setups and demonstrators. Collaborate closely with partners at other research facilities (IJS), and in industry to create a Slovene QKD network, to take first steps towards reliable applications of quantum technology in Slovenia, and to integrate it with similar networks in neighboring EU countries. (seminar on this topic) - Quantum optomechanics with optically trapped particles
Quantum optomechanics allows to control the motion of massive objects using light, and to transfer quantum states of light to quantum states of mechanical motion. Optical trapping allows to implement such systems without the need for mechanical support structures. This does not only allow minimizing decoherence via interactions with the environment, it also allows to study the quantum evolution massive objects in free fall. Quantum optomechanics promises novel applications e.g. in quantum sensing, quantum memories and quantum transducers, but it also allows for testing the foundations of quantum physics with increasingly massive objects.
Možne teme za seminar na 1. stopnji:
- Viri prepletenih fotonov – v seminarju bi predstavili osnoven koncept kvantne prepletenosti in pregled nekaj praktičnih implementacij kako jo doseči v laboratoriju. Tema seminarja je močno povezana z delom v Laboratoriju za kvantno optiko. (https://journals.aps.org/pra/abstract/10.1103/PhysRevA.69.013807 ; https://journals.aps.org/pra/abstract/10.1103/PhysRevA.69.013803 ; https://opg.optica.org/oe/fulltext.cfm?uri=oe-15-23-15377&id=144702 ; https://journals.aps.org/pra/abstract/10.1103/PhysRevA.73.012316 ; https://journals.aps.org/pra/abstract/10.1103/PhysRevA.69.041801) (kontakt: Žiga Pušavec)
- Kvantno šifriranje – Cilj kvantnega šifriranja je podoben kot v klasični generacija šifrirnega ključa, ta nam zagotovi tajnost komunikacije. V seminarju bi predstavili osnovne koncepte kvantnega šifriranja (protokola BB84 in E91) in njihovega fizikalnega ozadja. Seminar se lahko navezuje tudi na trenutni projekt SiQUID. (https://www.science.org/doi/10.1126/science.aam9288) (kontakt: Lara Ulčakar)
- Kvantni internet – Pod pojmom kvantni internet razumemo sklop večih kvantnih računalnikov, ki so med seboj povezani. Kako to uspešno doseči je odprto vprašanje, s katerim se ukvarjajo številne raziskovalne skupine. Cilj seminarja bi bil predstaviti osnovno motivacijo za tako omrežje, glavne izzive in kako so posamezne skupine na te odgovorile. Nekaj trenutnih state-of-the-art kvantih omrežij: omrežje QKD na Kitajskem (https://www.nature.com/articles/s41586-020-03093-8), kvantno omrežje v Cambridgu (https://www.nature.com/articles/s41534-019-0221-4), in kvantno omrežje MIT (https://nano-optics.seas.harvard.edu/sites/projects.iq.harvard.edu/files/nano-optics/files/2310.01316.pdf). (https://www.science.org/doi/10.1126/science.aam9288 ; https://www.nature.com/articles/35106500 ). Seminar se lahko navezuje tudi na trenutni projekt SiQUID. (kontakt: Lara Ulčakar)
- Prepletenost z ujetimi ioni kalcija – v seminarju bi predstavili osnove ionskih pasti (https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.62.531), osnovni koncept prepletenosti in predstavili praktično izvedbo prepletenosti med stanjem iona in fotonom (“The quantum internet,” H. J. Kimble, Nature 453, 1023 (2008); https://arxiv.org/abs/2208.14907; https://arxiv.org/abs/2105.02121; ). (kontakt: Žiga Pušavec)
- Kvantna optomehanika – Kvantna optomehanika opisuje področje eksperimentov, kjer za nadzor gibanja ujetih delcev uporabljamo svetlobo. V seminarju bi predstavili osnovne koncepte s tega področja in nekaj glavnih dosežkov (hlajenje delcev do osnovnega kvantnega stanja https://arxiv.org/pdf/1103.2144.pdf ). Seminar je lahko osnova za nadaljne raziskovalno delo v laboratoriju na tej tematiki. https://onlinelibrary.wiley.com/doi/full/10.1002/andp.201200226, https://mpl.mpg.de/fileadmin/user_upload/Marquardt_Division/Teaching/2014_ChapterDraftLesHouches.pdf) (kontakt: Žiga Pušavec)